Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal

نویسندگان

  • Yogendra K. Karna
  • Yousif Ali Hussin
  • Hammad Gilani
  • M. C. Bronsveld
  • M. S. R. Murthy
  • Faisal Mueen Qamer
  • Bhaskar Singh Karky
  • Thakur Bhattarai
  • Xu Aigong
  • Chitra Bahadur Baniya
چکیده

Integration of WorldView-2 satellite image with small footprint airborne LiDAR data for estimation of tree carbon at species level has been investigated in tropical forests of Nepal. This research aims to quantify and map carbon stock for dominant tree species in Chitwan district of central Nepal. Object based image analysis and supervised nearest neighbor classification methods were deployed for tree canopy retrieval and species level classification respectively. Initially, six dominant tree species (Shorea robusta, Schima wallichii, Lagerstroemia parviflora, Terminalia tomentosa, Mallotus philippinensis and Semecarpus anacardium) were able to be identified and mapped through image classification. The result showed a 76% accuracy of segmentation and 1970.99 as best average separability. Tree canopy height model (CHM) was extracted based on LiDAR’s first and last return from an entire study area. On average, a significant ulti-resolution segmentation orldView-2 correlation coefficient (r) between canopy projection area (CPA) and carbon; height and carbon; and CPA and height were obtained as 0.73, 0.76 and 0.63, respectively for correctly detected trees. Carbon stock model validation results showed regression models being able to explain up to 94%, 78%, 76%, 84% and 78% of variations in carbon estimation for the following tree species: S. robusta, L. parviflora, T. tomentosa, S. wallichii and others (combination of rest tree species). © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets

The diversity of scales and modes in which ground, airborne and spaceborne LiDAR operate has increased opportunities for quantitatively assessing forest structure, biomass and species composition and obtaining more general information on dynamics and ecological/commercial value. However, the level of information extracted can be increased even further by integrating data from other sensor types...

متن کامل

Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data

Mapping the spatial distribution of plant species in savannas provides insight into the roles of competition, fire, herbivory, soils and climate in maintaining the biodiversity of these ecosystems. This study focuses on the challenges facing large-scale species mapping using a fusion of Light Detection and Ranging (LiDAR) and hyperspectral imagery. Here we build upon previous work on airborne s...

متن کامل

Fusion of Remotely Sensed Multispectral Imagery and Lidar Data for Forest Structure Assessment at the Tree Level

A new feature-level fusion is presented for modelling individual trees by applying watershed segmentation and subsequent classification, using tree heights and tree crown signatures derived from light detection and ranging (lidar) data and multispectral imagery. The study area is part of the Moira State Forest, New South Wales, Australia where the dominant tree species are native eucalypts. In ...

متن کامل

Mapping savanna tree species using Carnegie Airborne Observatory hyperspectral data resampled to WorldView - 2 multispectral configuration

The advent of hyperspectral remote sensing has provided new opportunities for species mapping. However, the high dimensionality of hyperspectral data limits the application of parametric classifiers for species mapping because of the demand for a large number of training samples. This situation could change with the arrival of new spaceborne multispectral sensors such as WorldView-2 and RapidEy...

متن کامل

Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2015